skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fuentes, Raul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cone penetration test (CPT) is one of the most popular in situ soil characterization tools. However, the test is often difficult to conduct in soils with high penetration resistance. To resolve the problem, a rotary CPT device has recently been adopted in practice by rotating the rod to increase the penetrability, particularly in deep dense sand. This study investigates the underlying mechanism of the rotation effects from a micromechanical perspective using models based on the discrete element method. With rotation, the cone penetration resistance ( qc) decreases by up to 50%, while the cone torque resistance ( tc) increases gradually. These results are also used to successfully assess existing theoretical solutions. The mechanical work required during penetration is observed to keep rising as the rotational velocity increases. Microscopic variables including particle displacement and velocity field show that rotation reduces the volume of disturbed soil during penetration and drives particles to rotate horizontally, while contact force chain and contact fabric indicate that rotation increases the number of radial and tangential contacts and the corresponding contact forces, forming a lateral stable structure around the shaft, which can reduce the force transmitted to the particles below the cone, thus decreasing the vertical penetration resistance. 
    more » « less
  2. Abstract Development of self-burrowing probes that can penetrate soils without the aid of external reaction force from drill rigs and trucks would facilitate site characterization activities and deployment of sensors underneath existing structures and in locations with limited access (e.g., toe of dams, extraterrestrial bodies). Successful deployment of self-burrowing probes in the field will require several cycles of expansion, penetration, and contraction motions due to the geometric constraints and the increase in soil strength with depth. This study explores the multi-cycle performance of a dual-anchor self-burrowing probe in granular assemblies of varying density using discrete element modeling simulations. The simulated probe consists of an expandable top shaft, expandable bottom shaft, and a conical tip. The expansion of the shafts are force-controlled, the shaft contraction and tip advancement are displacement-controlled, and the horizontal tip oscillation is employed to reduce the penetration resistance. The performance of the self-burrowing probe in terms of self-burrowing distance is greater in the medium dense specimen than in the dense and loose specimens due to the high magnitude of anchorage force in comparison with penetration resistance. For all three soil densities, most of the mechanical work is done by tip oscillation; however, this accounts for a greater percentage of the total work in the denser specimen. Additionally, while tip oscillation aids in enabling self-burrowing to greater depths, it also produces a greater work demand. The results presented here can help evaluate the effects of soil density on probe prototypes and estimate the work requited for self-burrowing. 
    more » « less